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1. INTRODUCTION

The desire to employ classical mechanical molecular modeling and molecular dynamics for

ever more complicated molecular systems has created the need for more general and

accurate descriptions of the potential energy. Major goals of both molecular mechanics and

molecular dynamics calculations are to predict and understand the behavior of the system at a

molecular level. The success or failure in attaining these goals depends mainly on the

accuracy of the potential energy function in describing the system. Often only limited data are

available to use in developing these functions, such as vibrational frequencies and activation

energies from experiment, or selected energies and geometries calculated by ab initio

methods.

Molecular mechanics calculations employ force fields which are usually tailored to describe

conformational changes that lie within a few kcal/mol of the equilibrium structure and are

transferable among molecules. Recently developed force fields, such as MM3 (Allinger, Yuh,

and Lii 1989) and CFF89 (Maple et al. 1990), provide more general descriptions of materials

than did the first generation of force fields. While these force fields offer the opportunity to

model well the properties of materials, there is an increased requirement for molecular

information from which force field parameters can be derived. In several recent publications,

force field parameters have been derived by fitting to computed properties and to the energy

derivatives (first and second) calculated by ab initio quantum chemical techniques (Maple,

Dinur, and Hagler 1988; Hagler et al. 1989; Dinur and Hagler 1989a, 1989b, 1990). The fitting

techniques depend upon the application and upon the desire to derive transferable force field

parameters. Inclusion of the additional information obtained from the ab initio calculations has

been reasonably successful in deriving force fields that better describe the test molecule and

related molecules.

In a molecular dynamics simulation of a molecular reaction, by contrast, the energy

expression is generally designed for the specific problem, such as a decomposition path. In

that case, the potential energy function is designed to describe the reactant and product, and,

if applicable, the transition state for the reaction. Despite the difference in focus, the

techniques that have provrd successful in the development of force fields for molecular
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models should have application in the derivation of a molecular dynamics potential energy

function.

To test this assertion, we construct potential energy expressions for the methylene

nitramine molecule, CH2NNO 2, and examine the effects of these models on the dynamics of

unimolecular decomposition via N-N bond rupture. Ab initio calculations for methylene

nitramine, the transition state leading to the elimination of HONO and the N-N bond

fragmentation path have been reported (Mowrey et. al 1990). In the present work, we

assumed a specific molecular-mechanics-type functional form for the potential energy of

CH2NNO 2, and the parameters in this form were adjusted in two different ways. In the first,

Model 1, the parameters were fit to the matrix of second derivatives of the energy with respect

to Cartesian coordinates computed in Mowrey et al. (1990). The parameters for Model 2 were

fitted only to the harmonic vibrational frequencies reported by Mowrey et al. (1990). For this

study, the properties were computed for the equilibrium structure as determined using an

8-in-8 CASSCF with a double zeta atomic basis set.

In Section 2, we describe the functional form of the potential energy surface and comment

on the features. The following section contains the description of the molecular dynamics

calculations for both potential energy models and discusses the differences between the two

sets of results.

2. POTENTIAL ENERGY SURFACE

2.1 Form of the Potential. The function used to describe methylene nitramine is

VCH2NNo 2 = V .rch() + VN + + .t.) + Y
END ,END.T + BEO. +. , BEND + Torson + Toon (1)

ScN I + CNN CNNO VHCNN

+ + VVO] F(RNN)
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where all of the interaction potential energy functions and parameters are given in Table 1 and

F(RNd is a function which attenuates interaction terms as N-N dissociation occurs. The form

of F(RNv) is

1.0, R NI< R N

F(R) = NN(2)
cexp(_aNN[RNNR.']r), RNN>R.N(

where aNN and RN are the Morse-function parameters for the N-N bond listed in Table 1.

Some of the terms in Equation 1 show dependence on ri or t,(the HCNN or CNNO dihedral

angles, respectively). The force constants and geometries differ for these interactions

depending on the orientation of these dihedral angles. The changes in the two types of

parameters can be described as follows:

P = P"L + (PI - PI)[1.0- cos(,t)]/2 (3)

where r is the appropriate CNNO or HCNN dihedral angle and P denotes a force constant or

geometric parameter. The terms are functions of the out-of-plane wagging angle, (0.

The angle (o is given as

-4, x-4 -

cos(0) = (JR x R__)  .R (4)Rj Ril R sin Fej,) 1

and represents the angle between a bond ji and a vector perpendicular to the plane defined

by two bonds jk and jl, with o) = 900 corresponding to the equilibrium configuration. The

potential energy term for the wagging motion is the same as for the bending motion.

Parameters for Model 1 were obtained by a non-linear least squares fit to the Cartesian

second energy derivatives calculated by ab initio methods (Mowrey et al. 1990). Starting with

the parameter set for Model 1, the parameters for Model 2 were adjusted by non-linear least

squares to fit the ab initio frequencies only, without regard to the accompanying eigenvectors.

2.2 Features of the Two Models. The equilibrium geometries and normal mode

frequ3ncies for the two models are shown for comparison with the ab initio results in Tables 2

and 3, respectively. We have chosen the ab initio frequencies and eigenvectors as our

standard for comparison. Because the parameters of the potential function for Model 2 were

3
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Table 2. Structural Parameters for CH 2NNO 2 at the Equilibrium Geometry

Internala
Coordinate Ab initiob Model 1 Model 2

R(CN) 1.271 1.271 1.271
R(NN) 1.441 1.441 1.441
R(NO)C 1.303 1.303 1.303
R(NO)d 1.240 1.239 1.239
R(CH)0  1.073 1.073 1.073
R(CH) f  1.071 1.071 1.071

8(CNN) 115.700 115.700 115.700
Q(NNO)c 121.100 121.100 121.100
O(NNO)d 114.500 114.500 114.500
O(HCN)- 124.100 124.100 124.100
O(HCN)f 116.000 116.000 116.000
9(ONO) 124.400 124.500 124.500

a Bond distances and angles are given in units of A and degrees, respectively.
b 8-in-8 CASSCF/DZ (Mowrey et. al 1990).
c Oxygen atom no. I (see Figure 1).
d Oxygen atom no. 2 (see Figure 1).

0 Hydrogen atom no. 1 (see Figure 1).
f Hydrogen atom no. 2 (see Figure 1).

determined by fitting to the ab initio frequencies, the agreement between the two is very close.

This is the best fit to the frequencies that the functional form would allow. The comparison

between the ab initio frequencies and those calculated from Model 1 is, as expected, less

satisfactory. In fact, the frequencies calculated from Model 1 are in significant disagreement

with the ab initio value for modes 2, 4, 6, and 11. The eigenvectors of Model 1, however,

fairly well resemble those of the ab initio eigenvectors and are easily assignable for all modes.

In contrast, there are 6 modes in Model 2 (6, 8, 10, 11, 12, and 13) for which the eigenvectors

bear little resemblance to the corresponding standard. Of these, modes 8, 10, 11, and 12

cannot be assigned unambiguously to any of the ab initio eigenvectors. Mode 6, however,

bears a slight resemblance to the ab initio eigenvector for mode 5. To illustrate, the

eigenvectors corresponding to modes 4, 11, and 12 calculated by the 2 models are shown for

comparison with the standards in Figure 2. Figure 2a shows the worst agreement in

frequency between Model 1 and the standard. Inspection of this figure shows that the

eigenvectors of both of the models are in relatively good agreement with the standard.
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Table 3. Normal Mode Frequencies of CH 2NNO2

Mode No. Ab initiob Model 1c  Model 2d

1 100 101 101
2 391 274 391
3 561 560 560
4 621 441 619
5 665 610 666
6 872 732 868
7 896 894 894
8 1220 1206 1220
9 1261 1263 1263
10 1311 1312 1311
11 1580 1447 1580
12 1612 1637 1613
13 1839 1839 1840
14 3361 3362 3356
15 3483 3492 3487

ZPE' (eV) 1.2259 1.1884 1.2255

S Frequencies given in cm1 .

b 8-in-8 CASSCF/DZ (Mowrey et al. 1990).

c Eigenvectors corresponding to these frequencies matched to ab initio eigenvectors.

d Frequencies matched to ab initio frequencies regardless of eigenvector form.
a Zero point vibrational energy.

Figure 2b again demonstrates a case where the frequency of the mode predicted by

Model 1 disagrees with the standard, but the eigenvector is clearly assignable. In this case,

however, the eigenvector of Model 2 does not resemble the standard in spite of its excellent

agreement in frequency. In the last case, illustrated in Figure 2c, the frequencies from both

models compare well with the standard, but the eigenvector of Model 2 is unassignable to this

mode. The differences in vibrational frequencies between Model 1 and the standard merely

reflect the inability to perfectly fit the matrix of second-derivatives with respect to energy for

Model 1 which indicates deficiencies in the form of the potential energy function. On the other

hand, the inability to reproduce the eigenvectors from Model 2 is due not only to deficiencies

in the functional form, but also to the fact that the parameters for Model 2 were fit to less

potential energy surface information, specifically concerning the shape of the surface.

6
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Figure 1. Structure of Methylene Nitramine at the Equilibrium Geometry Obtained at the 8-in-8

CASSCF/DZ Level.
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(a)

A -

- . A--."A .

(b)

AB INITIO (1580) MODEL 1 (1447) MODEL 11 (1580)

t (c)

A3 INITIO (1612) MODEL 1 (1637) MODEL 1I1(1613)

Ab initio results are shown in the first column of the figures, while the results for Models 1 and 2 are shown in the
second and third columns, respectively. The harmonic frequencies of the modes are listed in parentheses.

Figure 2. Depictions of the Normal Modes of Vibrations of Methylene Nitramine for Modes

(a) 4, (b) 11, and (c) 12 (See Table 3).
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In almost all instances, there will be deficiencies in the form of the potential energy

function; therefore, it will be difficult to attain good fits. In addition to defining a suitably

flexible function, a modeler is also faced with the issue of whether it is better to correctly

describe the eigenvectors at the sacrifice of agreement in frequencies or to fit to the

frequencies only, thereby ignoring the detailed motion of the atoms. For this system, the

assumption that Model 2 accurately describes the system under study based only on

agreement with the harmonic frequencies is deceptive, considering how poorly some of the

eigenvectors compare with the ab initio values. Although differences in the dynamics occur

near the equilibrium geometry due to the differences in the fitting criteria for the model

(i.e., the normal modes), we wish to further explore how the reaction dynamics differ

depending on the different criteria used in fitting the functions. To investigate this, we

performed a series of molecular dynamics calculations on the two models; specifically, we

investigated the unimolecular decomposition of CH 2NNO 2.

3. DISCUSSION

Although there are experimental evidence (Zhao, Hintsa, and Lee 1988) and theoretical

predictions (Mowrey et. al 1990) that unimolecular decay of CH 2NNO 2 is more likely to occur

by concerted dissociation pathways than through N-N bond scission, for our purposes our

models only describe bond scission reactions. The N-N bond is the weakest bond in this

system by 2.4 eV, and this was the only reaction we observed.

Ensembles of trajectories at six energies were integrated using a variable step size

Adams-Moulton fourth-order predictor corrector integrator (Miller and George 1972). Relative

error tolerance was set at 10 7. Before each ensemble of trajectories is integrated, the system

(including the zero point energy) is equipartitioned among the normal modes in the form of

kinetic energy. A warm-up trajectory of approximately 0.03 ps is performed, and a Markov

walk of 75,000 steps is taken to randomize the energy of the system. A trajectory is then

integrated until the N-N bond exceeds 6.0 A or until the trajectory integration exceeds a

maximum time of 30 ps. A sequence of 1,500 Markov moves is taken from the starting point

of the previous trajectory and the integration/Markov walk pattern is repeated until 1,000

trajectories have been integrated. According to the standard Metropolis Monte Carlo sampling

procedure (Metropolis et. al 1953; Raff and Thompson 1985; Brady, Doll, and

9



Thompson 1981), if a trial move taken from the starting point of a previous trajectory j is

rejected, then the result of the previous trajectory is counted again and recorded as the j + 1

contribution to the ensemble average. The present Metropolis procedure was designed such

that approximately 50% of all attempted moves were rejected. Because of this rejection ratio,

results from approximately 50% of the 1,000 trajectories integrated were recounted and

included in the decay curves. In the Markov walk, the system is not allowed to exceed an

N-N bond distance of 3.75 A. Each trajectory included in the decay curves was required to

undergo at least one N-N bond vibration before dissociation; if it did not, it was not included.

The time of decomposition was marked at the last inner turning point of the N-N bond

vibration.

Figure 3 shows unimolecular decay curves of ln(P) vs. time where P is the fraction of

undissociated trajectories at time t for Models 1 and 2 at 2.9384, 3.1884, 3.4384, 3.6884,

3.9384, and 4.1884 eV. First-order rate coefficients were extracted from the straight line

portions of the curves and are listed in Table 4. In all of the figures, the decay curves of

Model 1 are well fit to a straight line, indicating the rate in this system is first-order and time

independent. Also, as expected, the rate coefficients show a monotonic increase with

increasing energy. Another indication of the well-behaved nature of this model is that the

rates can be described by the RRK statistical model (Robinson and Holbrook 1972)

k(E) = A [E (4)

where A = 5.1 ps1, E_ = 2.7 eV and s = 1.3. The calculated rates from Model 1 and those

predicted from Equation 4 are shown in Figure 4a.

The decay curves for Model 2 are not well behaved; in Figures 2b, 2d, and 2e there are at

least two regions that are linear but differ in slope. The slopes for the initial regions of these

three curves are significantly steeper than for the region of longer lifetimes, indicating that

there is a faster reaction rate for the early decomposition events and a slower rate for longer

reaction times. Like Model 1, the three other decay curves (Figures 2a, 2c, and 2f) can be

reasonably fit to a straight line. We attempted to fit the data from Model 2 to Equation 4 in

10
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Fioure 4. Plot of the First-Orderr Decay Coefficient as a Function Energy for (a) Model 1 andto) model 21qtSee Txt .
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Table 4. Computed Rate Coefficientsa

Energy (eV)b k (ps 1 )

Model 1 Model 2c

Fast Slow

2.94 1.64 3.96
3.19 2.54 1.46 0.142
3.44 2.98 4.36
3.69 3.23 3.71 1.310
3.94 3.48 4.80 0.729
4.19 3.57 5.38

The rate coefficients k are extracted from the least squares fits of the decay curves to the model of first order
reaction, ln(p) = -kt (Figure 3).

b Includes the zero point energy.
c See text.

the same manner as for Model 1 using the rate coefficients extracted from the curves in

Figures 2a, 2c, and 2f and the "fast" region of the curves in Figures 2b, 2d, and 2e. Because

Figures 2a, 2c, and 2f did not unambiguously exhibit a "slow" region of the curves, we did not

attempt to fit the "slow" rates to Equation 4. Comparison of the best fit of Equation 4 to the

rates extracted from Model 2 are shown in Figure 4b; the best fit parameters for this equation

are 11.9 ps1 , 1.178 eV and 2.97 for A, Eo, and s, respectively. As shown strikingly in

Figure 4b and Table 4, the rates from Model 2 have an erratic energy dependence, and are

poorly described by the RRK theory. These, coupled with bimodal behavior of the decay

curves in Figures 2b, 2d, and 2e, are indicative of nonstatistical behavior, possibly due to

bottlenecks in the system (Hase 1976).

Because CH 2NNO 2 has never been isolated and unimolecular decay experiments have

never been done on this molecule, particularly this channel, we cannot state unequivocally

which model more accurately represents the true system. We have shown, however, that with

little effort, nonstatistical behavior can be incorporated into a model, and at the very least, we

have shown that the rates of decomposition differ between the two models at all energies

studied. We wish to stress that Model 2, which predicts nonstatistical behavior, is fit to the

observable, the normal mode frequencies. If this nonstatistical behavior is only an artifact of

the fitting procedure, one could easily be led to erroneous conclusions about a given system

13



which exhibits very interesting dynamical behavior. The erratic nature of the dyramics results

obtained from Model 2 leads one to question the usefulness for prediction and understanding

the system as described by Model 2.
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